Answer Key to Practice Test 2 (Solving Systems of Equations by Elimination or Substitution)

1) $+\begin{aligned} & -x-y=8 \\ & x-3 y=8\end{aligned}$

It is easier to answer using ELIMINATION method since variable x of both equations have the same coefficients (regardless of the sign).
Since variable x of both equations have the same coefficients and different signs, we can eliminate it easily using ADDITION.

$$
\begin{gathered}
+\begin{array}{l}
-x-y=8 \\
x-3 y=8
\end{array} \\
\hline-4 y=16
\end{gathered}
$$

Solve for " y " algebraically: $\mathrm{y}=-4$
After solving for the value of " y ", solve for the value of " x " by substituting the value of " y " to ANY of the two equations. Using equation 1 :
$-x-(-4)=8$
$-x+4=8$
$-x=4$
$x=-4$
After solving for the value of " x " and " y ", do the checking on BOTH equations. Simply plug in the values of x and y in both equations:

Equation 1: $-(-4)-(-4)=8$

$$
4+4=8
$$

$$
8=8
$$

> Equation $2:-4-3(-4)=8$
> $-4+12=8$
> $8=8$

Since both checking are correct, you can now write your solution set: S.S. $\{(-4,-4)\}$
2) $\left\{\begin{array}{l}-2 x-2 y=6 \\ 10 x+10 y=-30\end{array}\right.$

You can simplify the equations first before solving:
$\left\{\begin{array}{l}-x-y=3 \\ x+y=-3\end{array}\right.$
It is easier to answer using ELIMINATION method since variable x (or in this case, even variable y) of both equations have the same coefficients (regardless of the sign).
Since variable x of both equations have the same coefficients and different signs, we can eliminate it easily using ADDITION.

$$
\begin{gathered}
\begin{array}{r}
-x-y=3 \\
x+y=-3
\end{array} \\
\hline 0=0
\end{gathered}
$$

S.S. $\{(x, y) \mid-x-y=3\}$
3) $\left\{\begin{array}{l}-x+\frac{2}{5}=-\frac{3}{5} y \\ 3 y=-\frac{18}{11} x+\frac{51}{11}\end{array}\right.$

You can remove all the fractions first on both equations so that it will be easier to manipulate.
$\left\{\begin{array}{l}-5 x+2=-3 y \\ 33 y=-18 x+51\end{array}\right.$
Make sure all the variables are "lined up".
$\left\{\begin{array}{l}-5 x+3 y=-2 \\ 18 x+33 y=51\end{array}\right.$
We cannot eliminate variable y or x yet because their coefficients are different. We need to make their coefficients the same first. It is easier to eliminate variable y, because we only need to manipulate the $1^{\text {st }}$ equation. We need to multiply the first equation by 11 so that the coefficients of y will be both 33 (regardless of the sign).
Note: You can also choose to eliminate variable x but it will take more effort since you need to multiply equation 1 by 18 and multiply equation 2 by 5 so that both variable x will have a coefficient of 90 .
$\left\{\begin{array}{l}-55 x+33 y=-22 \\ 18 x+33 y=51\end{array}\right.$
You can eliminate variable y using SUBTRACTION (since variable y has the same coefficients and the same sign as well):

$$
\begin{aligned}
-55 x+33 y & =-22 \\
-18 x+33 y & =51 \\
\hline-73 x & --73
\end{aligned}
$$

Solve for the value of x algebraically: $x=1$
After solving for the value of " x ", solve for the value of " y " by substituting the value of " x " to ANY of the two equations. Using equation 1 :
$-5(1)+2=-3 y$
$-5+2=-3 y$
$-3=-3 y$
$1=y$

After solving for the value of " x " and " y ", do the checking on BOTH equations. Simply plug in the values of x and y in both equations:
Equation 1: $-5(1)+2=-3(1)$

$$
\begin{aligned}
& -5+2=-3 \\
& -3=-3
\end{aligned}
$$

Equation 2: 33(1) $=-18(1)+51$

$$
33=-18+51
$$

$$
33=33
$$

Since both checking are correct, you can now write your solution set: S.S. $\{(1,1)\}$
4) $\left\{\begin{array}{l}7 x+2 y=-6 \\ -14 x-4 y=-2\end{array}\right.$

You can simplify equation 2 first before solving:
$\left\{\begin{array}{l}7 x+2 y=-6 \\ -7 x-2 y=-1\end{array}\right.$
It is easier to answer using ELIMINATION method since variable x (or in this case, even variable y) of both equations have the same coefficients (regardless of the sign).
Since variable x of both equations have the same coefficients and different signs we can eliminate it easily using ADDITION.

$$
+\begin{aligned}
& 7 x+2 y=-6 \\
& -7 x-2 y=-1 \\
& \hline 0=-7
\end{aligned}
$$

S.S. \{ \}
5) $\left\{\begin{array}{l}y=-5 \\ 5 x+4 y=-20\end{array}\right.$

Since y is already isolated, we can substitute its value to equation 2 already:
$5 x+4(-5)=-20$
$5 x-20=-20$
$5 x=0$
$\mathrm{x}=0$
After solving for the value of " x " (you already have the value for " y "), do the checking on equation 2 (no need to check for equation 1 in this case). Simply plug in the values of x and y in equation 2 :

Equation 2: $5(0)+4(-5)=-20$

$$
0-20=-20
$$

$$
-20=-20
$$

S.S. $\{(0,-5)\}$
6) $\left\{\begin{array}{l}-x+2 y=-7 \\ -2 x-6 y=-14\end{array}\right.$

You can simplify equation 2 first before solving:
$\left\{\begin{array}{l}-x+2 y=-7 \\ -x-3 y=-7\end{array}\right.$
It is easier to answer using ELIMINATION method since variable x of both equations have the same coefficients.
Since variable x of both equations have the same coefficients and the same signs, we can eliminate it easily using SUBTRACTION.

$$
\begin{array}{r}
-x+2 y=-7 \\
-x-3 y=-7 \\
\hline 5 y=0
\end{array}
$$

Solve for the value of y algebraically: $y=0$
After solving for the value of " y ", solve for the value of " x " by substituting the value of " y " to ANY of the two equations. Using equation 1 :
$-x+2(0)=-7$
$-x+0=-7$
$x=7$
After solving for the value of " x " and " y ", do the checking on BOTH equations. Simply plug in the values of x and y in both equations:

Equation 1: $-7+2(0)=-7$

$$
-7+0=-7
$$

Equation 2: $-2(7)-6(0)=-14$

$$
\begin{aligned}
& -14-0=-14 \\
& -14=-14
\end{aligned}
$$

Since both checking are correct, you can now write your solution set: S.S. $\{(7,0)\}$
7) $\left\{\begin{array}{l}2 x+18 y=22 \\ -x-9 y=-11\end{array}\right.$

You can simplify equation 1 first before solving:
$\left\{\begin{array}{l}x+9 y=11 \\ -x-9 y=-11\end{array}\right.$
It is easier to answer using ELIMINATION method since variable x (or in this case, even variable y) of both equations have the same coefficients (regardless of the sign).
Since variable x of both equations have the same coefficients and different signs, we can eliminate it easily using ADDITION.

$$
+\begin{gathered}
x+9 y=11 \\
-x-9 y=-11 \\
\hline 0=0
\end{gathered}
$$

$$
\{(x, y) \mid x+9 y=11\}
$$

8) $\left\{\begin{array}{l}x+7 y=0 \\ 2 x-8 y=22\end{array}\right.$

You can simplify equation 2 first before solving:
$\left\{\begin{array}{l}x+7 y=0 \\ x-4 y=11\end{array}\right.$
Let's try using substitution method here. It is easier to manipulate equation 1 since your constant is 0 (the constant of equation 2 is 11).
It is easier to manipulate equation 1 because its coefficient is $1: x=-7 y$
Since you manipulated equation 1, substitute $-7 y$ to x in equation 2 : $-7 y-4 y=11$
Solve for y algebraically: $-11 \mathrm{y}=11 \rightarrow \mathrm{y}=-1$
After solving for the value of " y ", solve for the value of " x " by substituting the value of " y " to ANY of the two equations. Using equation 1 :

$$
\begin{aligned}
& x+7(-1)=0 \\
& x-7=0 \\
& x=7
\end{aligned}
$$

After solving for the value of " x " and " y ", do the checking on BOTH equations. Simply plug in the values of x and y in both equations:

> Equation 1: $7+7(-1)=0$
> $7-7=0$

Equation 2: 2(7)-8(-1) = 22

$$
\begin{aligned}
& 14+8=22 \\
& 22=22
\end{aligned}
$$

Since both checking are correct, you can now write your solution set: S.S. $\{(7,-1)\}$

