Xavier School

SETS

Objectives:

After reading and completing this module, you will be able to do these:
\checkmark Show relationships between and among sets using Venn Diagram i.e. union, intersection and complementation.
\checkmark Define relationships between and among sets given in Venn diagram i.e. intersection and union of sets.

LESSON PROPER

VENN DIAGRAM

- The Venn diagram, named after the English logician James Venn, is a pictorial representation involving relations between and among the sets. It consists of a rectangle that represents the universal set and circles that represent the subsets.

UNIVERSAL SET

- The Universal set, or the universe, denoted by \mathbf{U}, is the set that contains all elements being discussed in a given discussion.

Example 1

Given: Universal set \mathbf{U} with its subsets A and B.

Example 2

Given:

$$
\begin{aligned}
& \mathbf{U}=\{\mathrm{s}, \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}\} \\
& \mathrm{A}=\{\mathrm{s}, \mathrm{x}, \mathrm{y}, \mathrm{x}\}
\end{aligned}
$$

U

Xavier School

SETS

Union of Sets

The union of two sets A and B , written $\mathrm{A} \cup \mathrm{B}$, is the set of all elements in A or in B .
That is, $A \cup B=\{x \mid x \in A$ or $B\}$.

Example 3

Given: $\mathrm{V}=\{5,8,11,14,27\}$
$W=\{1,2,3,4\}$
Find: VUW
Answer: V U W = \{1, 2, 3, 4, 5, 8, 11, 14, 17\}

Example 4

Given: $\mathbf{G}=\{2,3,4,5\}$

$$
H=\{3,6,9,12\}
$$

Find: GUH
Answer: $\mathrm{G} \mathrm{UH}=\{2,3,4,5,6,9,12\}$

Intersection of Sets

The intersection of two sets A and B, written $A \cap B$, is the set of all elements common to both A and B. That is, $A \cap B=\{x \mid x \in A$ and $x \in B\}$.

Xavier School

SETS

Example 5

Given: $G=\{2,3,4,5\}$

$$
H=\{3,6,9,12\}
$$

Find: $G \cap H$
Answer: $\mathrm{G} \cap \mathrm{H}=\{3\}$

Complement of a Set

The complement of set A, denoted by A^{\prime} (read as A prime) or Ac, is the set of all elements in the universal set U that are not in A. That is, $A^{\prime}=\{x \mid x \in U$ and $x \notin A\}$.

Example 6

Given: $U=\{4,5,7,8,10,11,13,14,16,17\}$

$$
V=\{5,8,11,14,17\}
$$

Find: V' or Vc

Answer: $\mathrm{V}^{\prime}=\{4,7,10,13,16\}$

Example 7

Given: $U=\{1,2,3,4,5,6,7,8,9,10,11,12\}$
$A=\{2,4,6,8,10,12\}$
$B=\{1,3,5,7,9,11\}$
$C=\{4,8,12\}$
Find: A U B
$A \cap C$
B C
C'
($\mathrm{A} \cup \mathrm{B})^{\prime}$

Answer:
$A \cup B=\{1,2,3,4,5,6,7,8,9,10,11,12\}$
$A \cap C=\{4,8,12\}$
$B \cup C=\{1,3,4,5,7,8,9,11,12\}$
$C^{\prime}=\{1,2,3,5,6,7,9,10,11\}$
$(A \cup B)^{\prime}=\{ \}$

Xavier School

SETS

Example 8

Find: $A \cup B$
$A \cap B$
A^{\prime}
B'
($\mathrm{A} \cup \mathrm{B}$)
Answer: $\mathrm{A} \cup \mathrm{B}=\{2,3,4,6,8,9,10\}$
$A \cap B=\{6\}$
$A^{\prime}=\{3,9\}$
$B^{\prime}=\{2,4,8,10\}$
$(A \cup B)^{\prime}=\{ \}$

Union

Intersection

Complement

