# 3 Set Relations

## **Objectives:**

After reading and completing this module, you will be able to do these:

- ✓ Compare sets, using the terms: a) equal and equivalent, b) joint and disjoint.
- ✓ Determine the subsets of a given set.



## EQUAL SETS

• Two sets A and B are equal, written as A = B, if and only if they contain exactly the same elements.

# Example:

Consider the sets

 $X = \{a, m, y\}$   $Y = \{y, m, a\}$   $Z = \{I. a. y\}$   $W = \{ma, y\}$ 

X has 3 elements namely a, m, y in alphabetical order.

Y has 3 elements namely a, m, y in reverse alphabetical order.

X and Y are equal sets.

Elements in both sets need not be of the same order.

# $X \neq Z$ , why?

Because there is an element in X that is not present in Z, and vice-versa. (*m* is not an element of Z and I is not an element of X)

 $Y \neq W$ , why?

Because Y has 3 elements namely y, m, a while W has 2 elements namely ma and y.

Xavier School SETS

#### **EQUIVALENT SETS**

 Two sets A and B are equivalent, written A ~ B, if and only if they have the same cardinal number;

that is n(A) = n(B).

## Example:

L = {Luzon, Visayas, Mindanao} M = {red, white, blue} I = {red, blue, white}

n(L) = 3, n(M) = 3 and n(I) = 3.

Since sets L, M and I have the same cardinal number which is 3, then, sets L, M, and I are equivalent.

Are there equal sets in the given example above? (Yes, M = I)

## JOINT SETS AND DISJOINT SETS

• Two sets A and B are disjoint sets if and only if they have no common element, otherwise they are joint sets.

#### Example:

E = {2, 4 6, 8, 10} O = {1, 3, 5, 7, 11} A = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}

Set E and set O are **disjoint** sets since they have no common element.

Set A and set O are joint sets since they have some common elements. Some elements of set O are also members of set A.

Set E and set A are joint sets since the elements of set O are also members of set A.

## Xavier School SETS

#### **SUBSETS**

Given sets A and B, A is a subset of B if every element of A is an element of B. In symbols, we write A ⊆ B (read as "A is a subset of B"). We say that A ⊆ B if and only if, for every x ∈ A, x ∈ B.

#### Example:

Given:  $U = \{a, b, c, d, e\}$   $X = \{a, c, e\}$   $Y = \{a, c, b, e, d\}$ 

 $\begin{array}{rcl} X \subseteq & Y \\ X \subseteq & U \\ Y \subseteq & U \end{array}$ 

The elements of set X are contained in set Y. The elements of set X are contained in set U. The elements of set Y are contained in set U.

#### PROPER SUBSET

If A ⊂ B and A ≠ B, we say that A is a proper subset of B, denoted by A ⊂ B. The symbol A ⊂ B means that every element of A belongs to B and B contains at least one element not found in A.

#### Example:

1.) Given:  $K = \{ 8, 12, 16 \}$   $L = \{ 8, 12, 16, 20 \}$   $M = \{ 8, 12, 16, 20, 22, 23 \}$ 

#### $\mathsf{K} \subseteq \mathsf{L}$

All elements of K are contained in set L. L contains an element (20) not found in K.  $K \subseteq M$  All elements of K are contained in set M. M contains elements not found in K.  $L \subseteq M$  All elements of L are contained in set M. M contains elements not found in K. 2.) If  $C = \{a, b, c\}$ , name all subsets of C.

Solution:

 $\{a\} \ \{b\} \ \{c\} \ \{a, b\} \ \{a, c\} \ \{b, c\} \ \{a, b, c\} \ \{\}$ 

## **NUMBER OF SUBSETS**

• The number of subsets of any given set may be determined by the formula 2<sup>n</sup>, where n denotes the cardinality of the number of elements of the set.

# Example

| Sets      | Cardinality | Subsets                                              | Number of<br>Subsets |
|-----------|-------------|------------------------------------------------------|----------------------|
| {1}       | 1           | { }, {1}                                             | 2                    |
| {0, 1}    | 2           | $\{ \}, \{0\}, \{1\}, \{0, 1\}$                      | 4                    |
| {2, 4, 6} | 3           | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 8                    |
|           | n           |                                                      | 2 <sup>n</sup>       |