Set Relations

Objectives:

After reading and completing this module, you will be able to do these:
\checkmark Compare sets, using the terms: a) equal and equivalent, b) joint and disjoint.
\checkmark Determine the subsets of a given set.

LESSON PROPER

EQUAL SETS

- Two sets A and B are equal, written as $A=B$, if and only if they contain exactly the same elements.

Example:

Consider the sets

$$
X=\{a, m, y\} \quad Y=\{y, m, a\} \quad Z=\{1 . a . y\} \quad W=\{m a, y\}
$$

X has 3 elements namely a, m, y in alphabetical order.
Y has 3 elements namely a , m , y in reverse alphabetical order.
X and Y are equal sets.
Elements in both sets need not be of the same order.
$X \neq Z$, why?
Because there is an element in X that is not present in Z , and vice-versa.
(m is not an element of Z and I is not an element of X)
$\mathrm{Y} \neq \mathrm{W}$, why?
Because Y has 3 elements namely y, m, a while W has 2 elements namely ma and y.

EQUIVALENT SETS

- Two sets A and B are equivalent, written $A \sim B$, if and only if they have the same cardinal number;
that is $n(A)=n(B)$.

Example:

$L=\{$ Luzon, Visayas, Mindanao $\}$
$M=\{r e d$, white, blue $\}$
I = \{red, blue, white $\}$
$n(L)=3, n(M)=3$ and $n(I)=3$.
Since sets L, M and I have the same cardinal number which is 3 , then, sets L, M, and I are equivalent.

Are there equal sets in the given example above? (Yes, $M=I$)

JOINT SETS AND DISJOINT SETS

- Two sets A and B are disjoint sets if and only if they have no common element, otherwise they are joint sets.

Example:

$E=\{2,46,8,10\}$
$\mathrm{O}=\{1,3,5,7,11\}$
$A=\{2,3,4,5,6,7,8,9,10,11,12,13\}$

Set E and set O are disjoint sets since they have no common element.
Set A and set O are joint sets since they have some common elements. Some elements of set O are also members of set A.
Set E and set A are joint sets since the elements of set O are also members of set A.

Xavier School

SUBSETS

- Given sets A and B, A is a subset of B if every element of A is an element of B. In symbols, we write $A \subseteq B$ (read as " A is a subset of B "). We say that $A \subseteq B$ if and only if, for every $x \in A, x \in B$.

Example:

Given:

$$
\mathrm{U}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\}
$$

$$
X=\{a, c, e\}
$$

$$
Y=\{a, c, b, e, d\}
$$

$X \subseteq Y$
$X \subseteq U$
$\mathrm{Y} \subseteq \mathrm{U}$

The elements of set X are contained in set Y.
The elements of set X are contained in set U.
The elements of set Y are contained in set U.

PROPER SUBSET

- If $A \subset B$ and $A \neq B$, we say that A is a proper subset of B, denoted by $A \subset B$. The symbol $A \subset B$ means that every element of A belongs to B and B contains at least one element not found in A.

Example:

1.) Given: $K=\{8,12,16\}$

$$
L=\{8,12,16,20\}
$$

$$
M=\{8,12,16,20,22,23\}
$$

All elements of K are contained in set L. L contains an element (20) not found in K . $\mathrm{K} \subseteq \mathrm{M} \quad$ All elements of K are contained in set M . M contains elements not found in K .
$L \subseteq M \quad$ All elements of L are contained in set M. M contains elements not found in K.

Xavier School SETS
2.) If $C=\{a, b, c\}$, name all subsets of C.

Solution:
\{a\}
\{b\}
\{c\}
\{a, b $\}$
\{a, c $\}$
\{b, c $\}$
\{a, b, c\} \{ \}

NUMBER OF SUBSETS

- The number of subsets of any given set may be determined by the formula 2^{n}, where n denotes the cardinality of the number of elements of the set.

Example

\(\left.$$
\begin{array}{|c|c|c|c|}\hline \text { Sets } & \text { Cardinality } & \text { Subsets } & \begin{array}{c}\text { Number of } \\
\text { Subsets }\end{array}
$$

\hline\{1\} \& 1 \& \},\{1\} \& 2

\hline\{0,1\} \& 2 \& \},\{0\},\{1\},\{0,1\} \& 4

\hline\{2,4,6\} \& 3 \& \{2\},\{4\},\{6\},\{2,4\},\{2,6\},\{4, \& 8

6\},

\{2,4,6\},\{ \}\end{array}\right]\)| 2^{n} |
| :--- |

