2

Set Description

Objectives:

After reading and completing this module, you will be able to do these:
\checkmark Determine the cardinality of a given set.
\checkmark Determine if a set is null set.
\checkmark Distinguish a finite from an infinite set.

LESSON PROPER

CARDINAL NUMBER

- The cardinal number or cardinality of a Set A, denoted by $n(A)$, indicates the number of elements in the set A.

Example:

1. The set $A=\{a, b, c\}$ has 3 elements, thus its cardinality is 3 , and we write $n(A)=3$.
2. If $N=\{n \mid n$ is a day of the week $\}$, the cardinality is 7 , and we write $n(N)=7$.
3. S is the set of 9 -year old students in Xavier High School; $\mathrm{n}(\mathrm{S})=0$.

EMPTY SET

- The empty set (or null set) is a set that has no elements (or members).
- Notation: The symbol \varnothing or $\}$ is used to represent the empty set.

Example:

1. The set of female students in Xavier School, San Juan. (There are no female students studying in Xavier School, San Juan. Therefore, the set has no elements.)
2. $\mathrm{D}=\{\mathrm{d} \mid \mathrm{d}$ is natural number less than 1$\}$ (Natural numbers are numbers starting from $1,2,3, \ldots$)

FINITE SET

- Finite sets are sets that have a finite number of members. If the elements of a finite set are listed one after another, the process will eventually "run out" of elements to list.
- A set is also finite if the cardinal number of A is a natural number or 0 .

Example:

A is the set of letters in the English alphabet.
$A=\{a, b, c, \ldots z\}$
Since there is a last element z , therefore, Set A is a Finite Set or,
Since $n(A)=26$ (the cardinality of set A is a natural number), therefore, set A is a finite set.

INFINITE SET

- A set A is infinite if it is not finite.
- It is not possible to explicitly list out all the elements of an infinite set.

Example:

A is the set of numbers which are multiples of 3 .
$A=\{3,6,9, \ldots\}$
Since there is no last element, therefore, set A is an infinite set or, $n(A)=n^{\#}$, therefore, set A is an infinite set.

TRY THIS!

Classify the following as finite or infinite.

1. A is the set of letters in the English alphabet.
2. B is the set of numbers that are multiples of 3 .
3. C is the set of animals inside Avilon Zoo.
4. D is the set of all even numbers.
5. E is the set of all perfect squares between 1 and 3000 .
